Simulating Circadian Light and Interpreting its Results

Athina Alight
athina.chuah@mail.utoronto.ca

J. Alstan Jakubiec
github.com/C38C/NIF_Photobiology
Non-image forming reception of light

- Melanopsin, a photoreceptor pigment in the eye, is more responsive to blue light than the combined photopic response of cone receptors.

- But it does not contribute to vision. Instead, it is wired directly to the suprachiasmatic nucleus (SCN) of the brain, our circadian pacemaker.

Illustration of mean cell density of melanopsin cells in a primate retina

- Melanopsin-containing cells are spread throughout the retina, a wide-gamut sensor of light.
Non-image forming effects of light

- **Advance or delay of circadian rhythms**
 - Dependent on time of exposure, spectrum, intensity

 (phase shift with 6.7 hours of 10,000 lx Ev)

- **Melatonin supression**
 - Light exposure at night suppresses Melatonin production.
 - Dependent on spectrum and intensity.

Non-image forming effects of light

Instantaneous alerting effects
- Light exposure decreases sleepiness, improves reaction time.

Treatment for sleep-related illnesses, dementia
- Can help regulate sleep/wake and activity patterns and improve depression symptoms.

Units of note: EML, $E_{e,\text{mel}}$

EML - Equivalent Melanopic Lux (lx)

$$EML = 729.8325 \cdot \int EM(\lambda)_{\text{lucas}} d\lambda$$

- Weighted Melanopic irradiance (Lucas curve) multiplied by luminous efficacy.
- Meant to be equivalent in understanding to lux for designers.
- Used by the WELL standard, for example.

$E_{e,\text{mel}}$ - Melanopic Irradiance (W/m2)

$$E_{e,\text{mel}} = \int EM(\lambda) d\lambda$$

- Weighted Melanopic irradiance by a response function normalized to 1.
- Used by CIE S026, photobiological models.
- $1 \text{ W/m}^2 E_{e,\text{mel}} \sim 834.2 \text{ lx EML}$
Annual Simulation Methods

Examples:

- Circadian potential (CP) (Anderson et al., 2012; Mardaljevic et al., 2013)
- Circadian Frequency (CF) (Konis, 2019)

Limitations:
- CP: Spectrally neutral spaces only
- CF: 3-colour channels

Percentage of time one viewpoint experiences levels above a threshold in a year
Extent to which the WELL standard (2018) is met
Annual Simulation Methods

Point-In-Time

Examples:
- ALFA (Solemma, 2020)
- Lark (Inancici et al., 2015)

Detailed information for a single viewpoint

More colour channels:
- ALFA: 81-channels
- Lark (Inancici et al., 2015): 9-channels

Limitations: Visualizing annual information
Existing non-image forming assessments: Amundadottir et al.’s nvR_D

- Nonvisual direct-response (nvR_D)

- Based on amount of irradiance required for nocturnal Melatonin suppression and on Phipps-Nelson et al.’s experiment that showed 2.7 W/m² of melanopic irradiance for a duration of 5 hours reduced the impact of sleep loss on sleepiness levels and performance.

- It is tentatively recommended to meet a nvR_D of 4.2 each day.

Existing non-image forming assessments: WELL Standard

“At 75% or more of workstations, at least 200 equivalent melanopic lux is present, measured on the vertical plane facing forward, 1.2 m [4 ft] above finished floor (to simulate the view of the occupant). This light level may incorporate daylight, and is present for at least the hours between 9:00 AM and 1:00 PM for every day of the year.”

• 200 EML on eye, 4 hours per day (office standard)

“During the nighttime, lights provide not more than 50 equivalent melanopic lux (to the extent allowable by code) as measured 0.76 m [30 inches] above the finished floor.”

• < 50 EML at night (residential standard)
Existing non-image forming assessments: Konis’s Circadian Frequency (CF)

- Percentage of time that the WELL 200 EML standard is met during a specified hour range across the year.

- Analogous to annual daylight metrics such as Daylight Autonomy and Useful Daylight Illuminance.

Existing non-image forming assessments: Mardaljevic, et al.’s N-VE

- Non-visual effects (N-VE)
- 0% circadian efficacy at 210 lx, 100% at 960 lx.
- Percent of efficacy divided into three time bins:
 - Early morning / phase resetting
 - Midday / alertness improving
 - Evening / phase delay & Melatonin suppression

Research goals

1. Framework for simulation:
 - Spectral qualities of a space / materiality
 - Demonstrates variability over the day and year based on climate and behaviour
 - Integrate electric lighting and screen devices

2. Compare simulation workflows

3. Develop a human photobiological effects model based on the best current research

4. Evaluate photobiological effects of realistic lighting scenarios

5. Compare circadian health metrics
Methodology
Calculating spectral irradiance timeseries: Daylight

- We employ the Lightsolve approach (Kleindienst et al. 2008) in conjunction with an 81 spectral channel Radiance-based raytrace tool ALFA, interpolating across the year based on 56 solar positions evenly spaced throughout the year.

- ALFA uses physics-based skies based on the atmospheric radiant transfer solver libRadtran and prototypical atmospheric profiles.

Alight and Jakubiec, Simulating Circadian Light and Interpreting its Results
Calculating spectral irradiance timeseries: Electric lighting

- ALFA is used to calculate melanopic irradiance due to electric luminaires (IES luminous intensity data) and specific lamp spectral power distributions.

- Here we have simulated warm (4100 K), neutral/cool (6100 K), and very high CCT (16000 K) fluorescent options.

- Monitor irradiance values are supplied from fluxometer.com, here illustrating an evening warm color temperature shift and a regular color palette.
Calculating spectral irradiance timeseries: Combined Melanopic Irradiance

Control Systems + Behaviour

Hour of Day: 7.6, 10.9, 14.1, 9.2, 12.5, 15.7

CCT (K): 4100, 6100, 16000

CCT (K): 1900, 6500
Photobiological effects model

- Homeostatic system
 Controlled by sleep/wake
- Circadian system
 Controlled by light and Non-photic factors (sleep/wake)
- Sleep
 Scheduled
 Wake: 6 - 24
 Sleep: 0 - 6
- Melanopic Irradiance
 Calculated from daylight, electric light, monitor screen use, and control schedules

- We implement the photobiological effects model by Postnova et al. (2018), Abeysuriya et al. (2018) and Tekieh et al. (2020).

- The model predicts homeostatic and circadian effects on alertness and productivity.
Photobiological performance metrics: Alertness

- **KSS - Karolinska Sleepiness Scale**
 1 - Extremely alert
 5 - Neither alert nor sleepy
 9 - Very sleepy, fighting sleep

- Average reaction time on a visual Performance Vigilance Test (vPVTRT)
 Lower is better / more alert
Photobiological performance metrics: Melatonin suppression

- Melatonin suppression
 Expressed as the percentage of melatonin suppressed compared to no light exposure.
Framework Summary

ALFA

- Timeseries spectrally resolved light simulation data
- Photobiological driven measures
- Dynamic photobiological framework that accounts for light history, timing, spectrum, and homeostatic body rhythms

Biological Models

- Melanopic Irradiance
Results
Prototypical space

- A hospital model based on HOK’s Ng Teng Fong east-facing daylit hospital wards was constructed and simulated with neutral spectral materials.

- 96 views (12 locations x 8 directions) were calculated.

- Climate of Toronto, Canada
Surface and Glazing Properties

- Similar visible reflectance/transmittance + different melanopic reflectance/transmittance

<table>
<thead>
<tr>
<th>Glazing Transmittance</th>
<th>Material Reflectance</th>
</tr>
</thead>
<tbody>
<tr>
<td>High M/P (>1)</td>
<td>Low M/P (<1)</td>
</tr>
<tr>
<td>Neutral M/P (=1)</td>
<td>Neutral M/P (=1)</td>
</tr>
<tr>
<td>Low M/P (<1)</td>
<td>High M/P (>1)</td>
</tr>
</tbody>
</table>
Simulation Methods / Comparative Measures

Methods in Comparison:
- ALFA (Solemma, 2019)
- Lark (Inanici et al., 2015; Inanici, 2015)
- CDAT (Konis, 2019)
- Mardaljevic et al., (2013)

* All methods use spectral sensitivity curve by Lucas et al., 2014

Equivalent Melanopic Lux, EML, is used as a standard comparative unit between the four methods.

Daylight only because Lark / CDAT / Mardaljevic et al. do not support luminaires.
Sky Spectra

ALFA: Physics Based
- Calculated using libRadtran (Mayer and Kylling, 2005)

Lark: User Input
- Based on Inanici et al., 2015.
- Daylight spectra from Excel Daylight Series Calculator (Munsell Color Science Laboratory, 2002)

Mayer et al., 2020
MARDELJEVIC ET AL., 2013 AND CDAT: SKY CLASSIFICATION

<table>
<thead>
<tr>
<th>Mardeljevic et al., 2013</th>
<th>CDAT cloud cover:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Clear: D75</td>
<td>• 0%: 25000K</td>
</tr>
<tr>
<td>• Cloudy: D65</td>
<td>• 10-50%: 7000K</td>
</tr>
<tr>
<td></td>
<td>• 60-100%: 5000 K</td>
</tr>
</tbody>
</table>
‘Clear Sky’ Simulation Comparison

ALFA and Lark
- Derived from Lightsolve framework (Anderson et al., 2008; Kliendienst et al., 2008)
- Solar positions for Toronto
- Clear Sky
Mardaljevic et al., 2013 and CDAT

- Uses standard climate files
- Clearest day with 7 days of Lightsolve day
Results

![Graph showing the results of simulations for different materials and glass types. The x-axis represents the melanopic/photopic illuminance ratio, while the y-axis represents density. Three columns show different materials: Low M/P Material, Neutral M/P Material, High M/P Material. Each column has three rows representing different glass types: High M/P Blue Glass, Neutral M/P Grey Glass, Low M/P Bronze Glass. The simulation methods include Mardaljevic et al., CDAT, Lark, and ALFA.](image)

Alight and Jakubiec, Simulating Circadian Light and Interpreting its Results
MARDALJEVIC ET AL. (2013)

- Accounts for spectrum of light source
- Missing spectral qualities of materials, which this study design highlights
Results

ALFA, LARK AND CDAT

- Impact/sensitivity of material spectra on results of each methods
- Follows number of colour channels
 - ALFA: 81
 - Lark: 9
 - CDAT: 3
Daylight only photobiological effects correlations

Metric
- Phaseshift
- Melatonin Suppression
- Sleepiness (KSS)
Influence of glazing and materials on daylight-only circadian effects

Materials M/P Reflectance

- Low
- Neutral
- High
Realistic lighting scenario generation for circadian effects

Hour of Day: 7.6 - 10.9 - 14.1 - 9.2 - 12.5 - 15.7

CCT (K): 4100 - 6100 - 16000

CCT (K): 1900 - 6500

Control Systems + Behaviour

1 M/P material properties
3 Scenarios

- Scenario 1(b) Daylight only
 - Minimal supplemental electric light during dark
 - Neutral glazing and neutral materials

- Scenario 2(b) Daylight and
 - Constant electric lighting at 6500 K CCT

- Scenario 3(b) Daylight and
 - Electric lighting controlled to reduce early morning and late evening irradiance
 - Monitor light that shifts to a warm CCT in the evening

- Calculated for daylight levels in March, June, and December.
Results: Mean alertness (pre-sleep hours)

- Mean KSS during evening hours: 9pm - midnight
- The impact of full-strength electric light is 1.5 units on the KSS scale. The difference between ‘fairly alert’ and ‘some signs of sleepiness.’
- Lighting controls (color, intensity change) have a meaningful impact on evening sleepiness!
Results: Mean Melatonin suppression

- As expected, Melatonin suppression follows the evening KSS results: there is less suppression with daylight as the only source of illumination.

- Melatonin suppression varies significantly by season and the length of a day.
Discussion / conclusion

- Sky models result in significant discrepancies between spectral lighting simulation methods
 (see Diakite-Kortlever & Knoop 2022; Maskarenj et al. 2022)

- Compared to daylight-only analysis, realistic combined models of melanopic irradiance are needed to fully assess non-visual photobiological effects.

- Calculating direct photobiological effects gives lighting designers more nuanced and actionable information for circadian wellbeing.
Limitations

• Many simulation methods cannot simulate electric light.

• More validation against real-world measurements are necessary (see Pierson et al. 2021; Safranek et al. 2022 in press)

• New models require complex inputs:
 - Occupant behavior and movement (see Danell, Amundadottir & Rockcastle 2020)
 - Electric lighting controls
 - Daylight controls (blinds / shades)
 - Light exposure profiles outside of a single building (home & office)
 - Sleep schedules

• Photobiological results do not provide a threshold of good / bad.
Ongoing work
Simulating Circadian Light and Interpreting its Results

Athina Alight
athina.chuah@mail.utoronto.ca

J. Alstan Jakubiec

Thank you!

The code used in this presentation is available at,
github.com/C38C/NIF_Photobiology

Athina’s work supported by:
University of Toronto Excellence Award
NSERC Discovery

We appreciate the contributions of:
Dr. Steven Lockley,
Dr. Svetlana Postnova, and
Dr. Tahereh Tekieh

1. University of Toronto, Daniels Faculty of Architecture, Landscape and Design