Are you ready for this?

- Brief overview/review of BSDFs
- Radiance BSDF material example
- Annual simulations (using new tools)
 - Daylight coefficient method
 - Three-phase method
 - Lightpipe example
 - Five-phase method
- What’s new at LBNL?
BSDF Overview/Review
Building design trends are moving towards new and innovative façades.
We need the ability to simulate complex fenestration systems.
A BSDF file is to a fenestration system what an IES file is to a luminaire.

However, a BSDF file contains output distributions for many incident directions.
A BSDF characterizes light transmission, reflection and directional distribution of a surface or product.

BSDF = Bidirectional **Scattering** Distribution Function

BRDF = Bidirectional **Reflection** Distribution Function

BTDF = Bidirectional **Transmittance** Distribution Function

BSDF = **BRDF** + **BTDF**
LBNL Window BSDFs use the *Klems angle basis*, which divides reflection and transmission hemispheres into 145 patches.
Radiance also supports variable resolution tensor tree BSDFs.

Hilbert Recursive Space Filling Curve

With Shirley-Chiu square to disk mapping

Permits variable resolution hemisphere subdivision.
Radiance also supports variable resolution tensor tree BSDFs.
Use BSDFs to simulate performance of optically complex fenestration systems/elements.
The slat angle of venetian blinds affects the distribution and quantity of light transmitted.
The slat angle of venetian blinds affects the distribution and quantity of light transmitted.
The thickness of threads in a woven shade cuts off direct transmission affecting directional transmission.
The thickness of threads in a woven shade cuts off direct transmission affecting directional transmission.
Expanded metal mesh has a higher transmission for light from below horizon than above.
Expanded metal mesh has a higher transmission for light from below horizon than above.
A micro perforated mesh cut at a downward angle transmits more light from below the horizon than above.
A micro perforated mesh cut at a downward angle transmits more light from below the horizon than above.
A perpendicular columnar structure admits more light at normal incidence than at off angles.
A perpendicular columnar structure admits more light at normal incidence than at off angles.
An optical light shelf redirects light towards the ceiling

Redirects Light from above horizontal
An optical light shelf redirects light towards the ceiling.
A micro-structured film refracts light towards the ceiling
A micro-structured film refracts light towards the ceiling
IES files enhanced our ability to simulate electric lighting, we hope BSDFs will do the same for daylight
BSDF files can help manufacturers, sales people, designers, owners and software developers.
Using a BSDF in Radiance is often better than modeling the geometry a complex fenestration system

- Reduces simulation load & saves time
 - Avoids many additional polygons
 - Reduces inter-reflections required

- Some systems can’t be modeled conventionally.
 - i.e. systems with microscopic geometry

- Some systems can’t be simulated conventionally.
 - i.e. systems that exhibit diffraction
Simulation programs that accommodate BSDFs

- Radiance
- OpenStudio
- EnergyPlus
- DAYSIM (nearly completed implementation)
Radiance BSDF Capabilities

- BSDF based material primitive allows BSDFs to be used in any simulation

- “Quick” annual daylight simulations are possible with BSDFs, including for dynamic systems.

- Users can create BSDFs (with genBSDF) for use in simulations
Radiance BSDF Material

• A material primitive using BSDF data

• Proxied geometry can be included for better rendering.

Without geometry

With geometry

Direct Ray

Ambient Ray

Sampling Displacement
Rendering w/ Venetian Blinds

Without geometry

With geometry
Rendering w/ Venetian Blinds

Without geometry

With geometry
Rendering w/ Optical Light Shelf

Without geometry

With geometry
Rendering w/ Optical Light Shelf

Without geometry

With geometry
BSDF Example
Radiance Model
Radiance Model

Use a BSDF to model the grates
Sandwich the grate with impostor BSDF surfaces.
1. Create a BSDF of the grate

- Create a smaller representative model.
 - Model should reside in -Z half space
 - +Z is front / outside / opposite normal
 - enclose edges
- `genBSDF +b +f -n 16 -c 2000 -geom inch grate.rad`
1b. Make sure you have a sensible BSDF
1b. Make sure you have a sensible BSDF

```
rmtxop -fc grate.xml | pfilt -x 725 -y 725 > grate_bsdf.hdr
```
Specular BSDF

Diffuse BSDF

Semi-Diffuse
2. Sandwich the geometry

```plaintext
void BSDF grate_top
6 0.05091 grate.xml 0 1 0.
0
0
grate_top polygon zone23.rad04614
0 0 12 -7.22613 0.25400 3.0184
  -4.40417 0.25400 3.0184
  -4.40417 20.94617 3.0184
  -7.22613 20.94617 3.0184

void BSDF grate_bottom
6 -0.05091 grate.xml 0 1 0.
0
0
grate_bottom polygon zone23.rad04614
0 0 12 -7.22613 0.25400 2.96750
  -4.40417 0.25400 2.96750
  -4.40417 20.94617 2.96750
  -7.22613 20.94617 2.96750

!xform -s .0254 -t -7.22613 0.25400 3.01835 shadegrate.rad
```
Good To Go!
New and Improved
Annual Simulations
now with rfluxmtx and rmtxop!
Daylight Coefficient Method

one/two phase method?
The Equations

Daylight Coefficient Equation:

\[E_{DC} = C_{dc}S \]

Three-Phase Equation:

\[E_{3\text{ph}} = VTDS \]

Five-Phase Equation:

\[E_{5\text{ph}} = VTDS - V_d TD_d S_d + C_{ds} S_{sun} \]
Daylight Coefficient Matrix (D_{dc})

Coefficients that describe the contribution of each sky patch to scene illumination.

Includes inter-reflection
Sky matrix (S)

A sky vector contains average sky luminance in a discretized sky patch for a specific sky luminance pattern (i.e. clear sky at 15:00 on December 21). (created using genskyvec)

A sky matrix is a series of sky vectors encompassing many time steps. (created from a weather data file using gendaylight)

\[E_{DC} = C_{dc}S \]
Creating the Daylight Coefficient Matrix

\[
E_{DC} = C_{dc}S
\]

\texttt{rfluxmtx} -n 8 -l+ -ab 12 -ad 10000 -lw 1e-4 \ \\
\quad < \text{points.txt} - \text{skies/sky.rad} \ \\
\quad \text{materials/testroom.mat objects/testroom.rad} \ \\
\quad > \text{DC.dmx}

\textbf{Old:}

\texttt{rcontrib} -n 8 -l+ -ab 12 -ad 10000 -lw 1e-4 \ \\
\quad < \text{points.txt} -e \text{MF:1} -f \text{reinhart.cal} -b \text{rbin} -bn \text{Nrbins} \ \\
\quad -m \text{sky_glow model.oct} > \text{DC.mtx}
In the receiver file (sensor points):

- Order Matters! - put the ground first, so that it is first in the matrix file.

- For the ground use a uniform hemisphere sampling basis.

- For the sky use a Reinhart (Tregenza) sampling basis.

```plaintext
#@rfluxmtx h=u u=Y
void glow ground_glow
0
0
4 1 1 1 0

ground_glow source ground
0
0
4 0 0 -1 180

#@rfluxmtx h=r1 u=Y
void glow sky_glow
0
0
4 1 1 1 0

sky_glow source sky
0
0
4 0 0 1 180
```
Creating a Rendered DC Matrix

\[E_{DC} = C_{dc} S \]

```
vwrays -ff -vf views/back.vf -x 600 -y 600 \\ | rfluxmtx `vwrays -vf views/back.vf -x 600 -y 600 -d` \\
-ffc -ab 12 -ad 50000 -lw 2e-5 \\
- skies/sky.rad \\
materials/testroom.mat objects/testroom.rad
```
In the receiver file (renderings):

```c
#ifdef #rfluxmtx
  h=u u=Y o=dcx/g%03d.hdr
  void glow ground_glow
  0 0 0 1110
  ground_glow source ground
  0 0 0 0001 180

  #rfluxmtx h=r1 u=Y o=dcx/s%03d.hdr
  void glow sky_glow
  0 0 0 1110
  sky_glow source sky
  0 0 0 0011 180
#endif
```

$E_{DC} = C_{dcS}$
Rendered DC matrix
Generating the sky vector/matrix

• gendaymtx - sky matrix for multiple time steps
 • epw2wea USA_Ca_Oakland.epw USA_CA_Oakland.wea
 • gendaymtx USA_CA_Oakland.wea > Oakland.smx

• genskyvec - sky vector for single time step
 • genskyvec -m 1 sky_12-21-15.rad > skyvec_12-21-15.skv
 • gensky 12 21 15 | genskyvec -m 1 > skyvec_12-21-15.skv
gendaymtx

gendaymtx USA_CA_Oakland.epw \ USA_CA_Oakland.wea

place Oakland Metropolitan Arpt_USA
latitude 37.72
longitude 122.22
time_zone 120
site_elevation 2.0
weather_data_file_units 1
1 1 0.500 0 0
1 1 1.500 0 0
1 1 2.500 0 0
1 1 3.500 0 0
1 1 4.500 0 0
1 1 5.500 0 0
1 1 6.500 0 0
1 1 7.500 71 1
1 1 8.500 463 41
1 1 9.500 573 81
1 1 10.500 712 95
1 1 11.500 655 129
1 1 12.500 684 121
1 1 13.500 717 110
...

gendaymtx USA_CA_Oakland.epw \\ > skies/Oakland.smx

#?RADIANCE
gendaymtx USA_CA_Oakland.Intl.AP.724930_TMY3.wea
LATLONG= 37.72000000 -122.22000000
NROWS=146
NCOLS=8760
NCOMP=3
FORMAT=ascii

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0.0678 0.0678 0.0678
4.31 4.31 4.31
9.92 9.92 9.92
15 15 15
17.2 17.2 17.2
17.7 17.7 17.7
16.6 16.6 16.6
...

```
<table>
<thead>
<tr>
<th>genskyvec -m 1 -c 1 1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.93429571 9.93429571 9.93429571</td>
</tr>
<tr>
<td>25.0276164 25.0276164 25.0276164</td>
</tr>
<tr>
<td>24.1410850 24.1410850 24.1410850</td>
</tr>
<tr>
<td>23.7024527 23.7024527 23.7024527</td>
</tr>
<tr>
<td>23.9114161 23.9114161 23.9114161</td>
</tr>
<tr>
<td>25.3207076 25.3207076 25.3207076</td>
</tr>
<tr>
<td>28.4104614 28.4104614 28.4104614</td>
</tr>
<tr>
<td>34.8112246 34.8112246 34.8112246</td>
</tr>
<tr>
<td>45.5503249 45.5503249 45.5503249</td>
</tr>
<tr>
<td>65.3156192 65.3156192 65.3156192</td>
</tr>
<tr>
<td>100.950139 100.950139 100.950139</td>
</tr>
<tr>
<td>145.021263 145.021263 145.021263</td>
</tr>
<tr>
<td>1248.24006 1248.24006 1248.24006</td>
</tr>
<tr>
<td>120.810790 120.810790 120.810790</td>
</tr>
<tr>
<td>77.4222078 77.4222078 77.4222078</td>
</tr>
<tr>
<td>54.1575689 54.1575689 54.1575689</td>
</tr>
<tr>
<td>39.5426404 39.5426404 39.5426404</td>
</tr>
<tr>
<td>32.0955405 32.0955405 32.0955405</td>
</tr>
<tr>
<td>26.4445438 26.4445438 26.4445438</td>
</tr>
<tr>
<td>24.9248813 24.9248813 24.9248813</td>
</tr>
<tr>
<td>24.1096202 24.1096202 24.1096202</td>
</tr>
</tbody>
</table>
```

No Header
(will likely change)
Putting it all together (Sensor Points)

```
rmtxop DC.dmx skies/Oakland.smx \n  | rmtxop -fa -c 47.4 119.9 11.6 -t - > E_dcx.txt
```

- Transpose Matrix
- Convert from Irradiance to Illuminance
Putting it all together (Sensor Points)

```plaintext
#?RADIANCE
rmtxop -fa -c 47.4 199.9 11.6 -t -
NROWS=8760
NCOLS=6
NCOMP=1
FORMAT=ascii

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
</tr>
<tr>
<td>8.2342E+02</td>
<td>1.7052E+02</td>
<td>9.0510E+01</td>
<td>5.6598E+01</td>
<td>4.6165E+01</td>
<td>3.2211E+01</td>
</tr>
<tr>
<td>1.7411E+04</td>
<td>5.2983E+03</td>
<td>2.0582E+03</td>
<td>1.2842E+03</td>
<td>9.3520E+02</td>
<td>6.8428E+02</td>
</tr>
<tr>
<td>3.9953E+04</td>
<td>2.3970E+04</td>
<td>7.7398E+03</td>
<td>2.6302E+03</td>
<td>1.8669E+03</td>
<td>1.5224E+03</td>
</tr>
<tr>
<td>6.0483E+04</td>
<td>4.4820E+04</td>
<td>2.1390E+04</td>
<td>6.8013E+03</td>
<td>2.8950E+03</td>
<td>2.0802E+03</td>
</tr>
<tr>
<td>7.0504E+04</td>
<td>5.1113E+04</td>
<td>2.3234E+04</td>
<td>6.7426E+03</td>
<td>4.0815E+03</td>
<td>2.6280E+03</td>
</tr>
<tr>
<td>6.8177E+04</td>
<td>5.1835E+04</td>
<td>2.7949E+04</td>
<td>8.9567E+03</td>
<td>5.2072E+03</td>
<td>2.8571E+03</td>
</tr>
<tr>
<td>6.5962E+04</td>
<td>4.9738E+04</td>
<td>2.5599E+04</td>
<td>9.4266E+03</td>
<td>4.2354E+03</td>
<td>2.2747E+03</td>
</tr>
<tr>
<td>5.2922E+04</td>
<td>3.4003E+04</td>
<td>1.3659E+04</td>
<td>4.6648E+03</td>
<td>2.4278E+03</td>
<td>1.6722E+03</td>
</tr>
<tr>
<td>3.0453E+04</td>
<td>1.2224E+04</td>
<td>3.9111E+03</td>
<td>2.0176E+03</td>
<td>1.2847E+03</td>
<td>9.4587E+02</td>
</tr>
<tr>
<td>6.0474E+03</td>
<td>1.1789E+03</td>
<td>7.1055E+02</td>
<td>4.9880E+02</td>
<td>2.8636E+02</td>
<td>2.4174E+02</td>
</tr>
<tr>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
</tr>
<tr>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
<td>0.0000E+00</td>
</tr>
</tbody>
</table>
```

Putting it all together (Renderings)

dctimestep dcx/g_%03d.hdr skies/12_21_15.skv \
> images/122115_clear_dcx.hdr

pcond images/122115_clear_dcx.hdr | \
pcompos -a 2 - 'falsecolor -s 2000 -log 2 -i images/122115_clear_dcx.hdr' | \
ra_tiff -z - images/122115_clear_dcx.tif
Clear Glazing, ground truth simulation

Clear Glazing, daylight coefficient simulation
dctimestep

- Usage:
 - Daylight Coefficients
 - `dctimestep` DC.mtx sky.mtx (2 arguments)
 - `cat` sky.mtx | `dctimestep` DC.mtx (1 argument)
 - Three-phase
 - `dctimestep` V.mtx T.xml D.mtx sky.mtx (4 arguments)
 - `cat` sky.mtx | `dctimestep` V.mtx T.xml D.mtx (3 arguments)

- Can handle a rendered DC or View matrix

- When giving 3 or 4 arguments the second argument must be a BSDF xml file.

- `dctimestep` does not expect a header on sky vector/matrix file (will likely change).
rmtxopt

• Usage:
 • `rmtxopt` DC.mtx S.mtx > E.mtx
 • `rmtxopt` V.mtx T.xml D.mtx S.mtx > E.mtx
 • `rmtxopt` V.mtx T1.xml T2.xml D.mtx S.mtx > E.mtx
 • `rmtxopt` V.mtx T1.xml LP.mtx T2.xml D.mtx S.mtx > E.mtx
 • and more…

• Performs multiplication, addition, scaling and component operations.

• Any number of matrices can be passed to rmtxopt.

• Matrix format can be a coefficient matrix or BSDF XML file. (Can not handle image matrix)
Three-Phase Method
The Equations

Daylight Coefficient Equation:

\[E_{DC} = C_{dc}S \]

Three-Phase Equation:

\[E_{3ph} = VTDS \]

Five-Phase Equation:

\[E_{5ph} = VTDS - V_dT_DdS_d + C_{ds}S_{sun} \]
Three-Phase Method

V = View Matrix (interior)
T = Transmission Matrix (BSDF)
D = Daylight Matrix (exterior)
S = Sky Matrix
View matrix (V)

The view matrix contains coefficients relating energy leaving a window in klems direction bins energy incident at a sensor point or image pixel.
Transmission matrix (T) / BSDF

The transmission matrix contains coefficients relating energy incident on a window and energy leaving a window in Klem's directional bins.
Daylight matrix (D)

The daylight matrix contains coefficients relating energy leaving sky patches with energy incident on a window in a klems directional bin.
Sky matrix (S)

A sky vector contains average sky luminance in a discretized patch. A sky matrix is a series of sky vectors encompassing many time steps.

gendaymtx was recently added to Radiance to create a sky matrix from a *.wea weather data file.
Why can’t we do a daylight coefficient simulation with CFS?

- Sky is a glow material - stochastically sampled
- BSDF rays are emitted based on importance
- No deterministic rays for sun

- ~ 14 Reinhart patches to 1 Klems patch
- 0.09% / 43.2% from BSDF
- 6,720 ambient rays ~ 1 sample/ Reinhart patch.
- 0.09% of 100,000 lux = 90 lux
Generating a rendered view matrix:

Old:

```
$ vwrays -ff -vf views/back.vf -x 600 -y 600 | \n  rcontrib -n 8 `vwrays -vf views/back.vf -x 600 -y 600 -d` \n     -ffc -ab 12 -ad 50000 -lw 2e-5 \n     -o images/vmx/window_%03d.hdr -f klems_int.cal \n     -b kbinS -bn Nkbins -m windowglow model.oct
```

New:

```
$ vwrays -ff -vf views/back.vf -x 600 -y 600 | \n   rfluxmtx `vwrays -vf views/back.vf -x 600 -y 600 -d` \n      -ffc -ab 12 -ad 50000 -lw 2e-5 \n      - objects/window.rad \n objects/window.rad \n materials/testroom.mat objects/testroom.rad
```
Generating a rendered view matrix:

Old:

```
$ vwrays -ff -vf views/back.vf -x 600 -y 600 | \
   rcontrib -n 8 `vwrays -vf views/back.vf -x 600 -y 600 -d` \ 
   -ffc -ab 12 -ad 50000 -lw 2e-5 \ 
   -o images/vmx/window_%03d.hdr -f klems_int.cal \ 
   -b kbinS -bn Nkbins -m windowglow model.oct
```

New:

```
$ vwrays -ff -vf views/back.vf -x 600 -y 600 | \
   rfluxmtx -n 8 `vwrays -vf views/back.vf -x 600 -y 600 -d` \ 
   -ffc -ab 12 -ad 50000 -lw 2e-5 \ 
   - objects/window.rad \ 
   materials/testroom.mat objects/testroom.rad
```
View Matrix: In the window.rad file

#@rfluxmtx h=kf u=Z o=images/vmx/window_%03d.hdr

void glow windowglow
0
0
4 1 1 1 1 0

windowglow polygon window
0
0
0
12 0.5 -0.15 1
 0.5 -0.15 2
 3.5 -0.15 2
 3.5 -0.15 1
Recommendations for View matrix

- Use glow material for window geometry - improves sampling of large / nearby windows.
- Increase -ad substantially
- Set -lw to a_d^{-1}

<table>
<thead>
<tr>
<th>parameter</th>
<th>default setting</th>
<th>recommended*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>ad</td>
<td>350</td>
<td>16,384</td>
</tr>
<tr>
<td>lw</td>
<td>2E-03</td>
<td>6.10e-5 (ad)</td>
</tr>
</tbody>
</table>

* recommendations based on BRE validation space
Generating a daylight matrix using rfluxmtx:

Old:
genklemsamp -vd 0 -1 0 objects/window.rad | \
 rcontrib -e MF:4 -f reinhart.cal -b rbin -bn Nrbins \
 -m sky_glow -faf model_dmx.oct > south.dmx

New:
rfluxmtx objects/window.rad skies/sky.rad \
 materials/testroom.mat objects/testroom.rad \
> south.dmx
Generating a daylight matrix using rfluxmtx:

Old:
genklemsamp -vd 0 -1 0 objects/window.rad \
rcontrib -e MF:4 -f reinhart.cal -b rbin -bn Nrbins \
-m sky_glow -faf model_dmx.oct > south.dmx

New:
rfluxmtx objects/window.rad skies/sky.rad
materials/testroom.mat objects/testroom.rad
> south.dmx
In the sender file:

```c
//@rfluxmtx h=kf u=Z o=images/vmx/window_%03d.hdr

void glow windowglow
0
0
4 1 1 1 0

windowglow polygon window
0
0
12 0.5 -.15 1
  0.5 -.15 2
  3.5 -.15 2
  3.5 -.15 1
```

• This is the same as the view matrix receiver file!

• Output specification is ignored in a sender file
 (Rejoice! You don’t have to have a separate sender and receiver file for the same geometry)
In the receiver file:

```plaintext
# @rfluxmtx h=u u=Y
void glow ground_glow
0
0
4 1 1 1 0

ground_glow source ground
0
0
4 0 0 -1 180

# @rfluxmtx h=r1 u=Y
void glow sky_glow
0
0
4 1 1 1 0

sky_glow source sky
0
0
4 0 0 1 180
```

- Order Matters! - put the ground first, so that it is first in the daylight matrix file.
- For the ground use a uniform hemisphere sampling basis.
- For the sky use a Reinhart (Tregenza) sampling basis.
Putting it all together

\[\text{dctimestep images/vmx/window_\%03d.hdr}\]
\[\text{data/singleclear.xml results/south.dmx}\]
\[\text{skies/12_21_15.skv > images/122115_clear.hdr}\]

\[\text{pcond images/122115_clear.hdr | \}}\]
\[\text{pcompos -a 2 - '!falsecolor -s 2000 -log 2 -i images/122115_clear.hdr' | \}}\]
\[\text{ra_tiff -z - images/122115_clear.tif}\]
Venetian Blind 0° tilt, three-phase simulation

Venetian Blind 45° tilt, three-phase simulation
Clear Glazing, ground truth simulation

Clear Glazing, daylight coefficient simulation

Clear Glazing, three-phase simulation
Light Pipe Example

New capability enabled by rfluxmtx & rmtxop
View Matrix (sensor points)

rfluxmtx -n 8 -faa -l+ -ab 12 -ad 50000 -lw 2e-5 -y 6 \ <points.txt - objects/LP_bottom.rad \ materials_light.rad model.rad > results/points.vmx

Sender
Model
Receiver

rfluxmtx h=kf u=+Y

LP_bottom polygon f_119_0
0
0
72
3.107166 2.827189 3.048000
3.048000 2.819400 3.048000
2.988834 2.827189 3.048000 ...
View Matrix (rendering)

vwrays -fa -vf views/v2.vf -x 600 -y 600 \
 rfluxmtx -n 8 `vwrays -vf views/v2.vf -x 600 -y 600 -d` \
 -fac -ab 8 -ad 5000 -lw 2e-4 \
 objects/LP_bottom.rad \
 materials_light.rad model.rad

Model

Receiver

Sender

#@rfluxmtx h=hf u=+Y o=results/v2_vmx/v2_%03d.hdr

LP_bottom polygon f_119_0

0

0

72

3.107166 2.827189 3.048000

3.048000 2.819400 3.048000

2.988834 2.827189 3.048000 ...
Why do we use the light material?

light materials are sampled deterministically, which is desirable for the light pipe because:

• small aperture
• no nearby points
View Matrix Renderings
Characterizing the lenses:

- Roof lens = glass (88% transmission)
- Room lens = trans (Td=0.05 Ts=0.55 Rd=0.3 Rs=0.03 rough=0.25) Also, importantly no fresnel effects w/trans)

- You can model a much more complex lens!
- We’ll use genBSDF with a rectangular surface. This assumes that the lens is thin without edge effects.
Characterizing the lenses:

```bash
genBSDF -n 8 +f +b -r ‘-ab 2 -ad 1000 -lw 1e-3’ -c 10000 \ lens.rad > lens.xml
```

#T_d=0.05 T_s=0.55 R_d=0.3 R_s=0.03
void trans LP_bottom
0
0
7 0.928 0.928 0.928 0.03 0.25 0.667 0.917
LP_bottom polygon poly4BSDF
0
0
12 0 0 0
 1 0 0
 1 1 0
 0 1 0
Generated BSDF
Generated BSDF
Characterizing the lenses:

```
$ genBSDF -n 8 +f +b -r ‘-ab 2 -ad 10 -lw 1e-3’ -c 100 \ 
  glass.rad > glass.xml
```

Model

- \(TN = 0.88 \)
- Void glass LP_top
- 0
- 0
- 3 0.9584 0.9584 0.9584

LP_top polygon poly4BSDF
- 0
- 0
- 12 0 0 0
- 1 0 0
- 1 1 0
- 0 1 0
Glass BSDF

Visible Transmission Back
Direct Hemispherical = 86.7%
Glass BSDF
Characterizing the pipe transmission

```
rfluxmtx -n 8 -ab 12 -ad 1000 -lw 1e-4 \
objects/LP_bottom.rad objects/LP_top.rad \
materials_glow.rad objects/LP_sides.rad \
> results/LP_trans.mtx
```

Warning: The simulation parameters for a specular light pipe used here are untested. Convergence testing is recommended to determine appropriate settings.
The ‘Daylight’ Matrix

```
rfluxmtx -n 8 -ab 2 -ad 5000 -lw 1e-4 -c 10000 \ objects/LP_top.rad skies/sky.rad \ materials.rad model.rad > results/exterior.dmx
```
Putting it all together (sensor points)

```
rmtxop results/points.vmx bsdf/lens.xml \ 
results/LP_trans.mtx bsdf/glass.xml \ 
results/exterior.dmx skies/12_21_15.skv
```
```
rmtxop -fa -c 47.4 119.9 11.6 - > illum_12_21_15.txt
```

(Change from Irradiance to Illuminance)

```
#?RADIANCE
rmtxop -fa -c 179 0 0 -
NROWS=5
NCOLS=1
NCOMP=1
FORMAT=ascii
```
```
2.767935412636226e+00
2.971198976613583e+00
3.337874915476797e+01
3.173601257922114e+00
3.558548860092117e+00
```
Putting it all together (renderings)

rmtxop can’t handle image view matrices. We have to arrange the matrices so that we can use dctimestep.

1. Combine pipe, skylight and daylight matrix into a pseudo-daylight matrix.

```
   rmtxop results/LP_trans.mtx \ 
   bsdg/glass.xml \ 
   results/exterior.dmx \ 
   > pipe2exterior.dmx
```
Putting it all together (renderings)

2. Use dctimestep to run the three-phase

```
dctimestep \ results/v2_vmx/v2_%03d.hdr \ bsdf/lens.xml \ results/pipe2exterior.dmx \ skies/12_21_15.skv > 12_21_15.hdr
```
Rendered Result
Changing something

Let’s say we wanted to try a different lens at the end of the lightpipe.

Just change the matrix!

dctimestep \ results/v2_vmx/v2_%03d.hdr \ bsdf/glass.xml \ results/pipe2exterior.dmx \ skies/12_21_15.skv > 12_21_15.hdr
Rendered Result - clear lens
Rendered Result - lambertian lens
The 5-phase method

Now with 67% more phases!
Why do we need more %@#!$ phases?

- The three-phase method disperses energy passing through the window.
- Particularly evident with direct solar component.
- Five-phase method uses high-resolution BSDF or actual BSDF geometry for direct solar component.
The Equations

Daylight Coefficient Equation:

\[E_{DC} = C_{dc}S \]

Three-Phase Equation:

\[E_{3ph} = VTDS \]

Five-Phase Equation:

\[E_{5ph} = VTDS - V_d TD_d S_d + C_{ds}S_{sun} \]

- Direct sun calculated using high-resolution BSDF or system geometry.
- Direct sun component calculated using the 3-phase method.
- 3-phase simulation.
Graphically

\[I_{5ph} = VTDS - V_d T_d S_d + C_{ds} S_{sun} \]
Graphically

\[I_{5ph} = VTDS - V_d T D_d S_d + C_{ds} S_{sun} \]
First Term: 3-phase

\[I_{5ph} = VTDS - V_dTD_dS_d + C_{ds}S_{sun} \]

- \(V \) = View Matrix (interior)
- \(T \) = Transmission Matrix (BSDF)
- \(D \) = Daylight Matrix (exterior)
- \(S \) = Sky Matrix
Second Term: Direct component of 3-phase

\[I_{5ph} = VTDS - V_dT D_d S_d + C_{ds} S_{sun} \]

- \(V_d = \) Direct View Matrix (interior)
- \(T = \) Transmission Matrix (BSDF)
- \(D_d = \) Direct Daylight Matrix (exterior)
- \(S_d = \) Direct Sky Matrix
Direct Sky Matrix (S_d)

The direct sky matrix contains only luminance from the sun.

gendaymtx has a -d option to generate a direct only sky matrix.

$$I_{5ph} = VTDS - V_d T D_d S_d + C_{ds} S_{sun}$$
Daylight matrix (Dd)

The daylight matrix contains coefficients relating energy leaving sky patches with energy incident on a window in a klems directional bin, without any external inter-reflection.

rcontrib is used with -ab 0

Even with -ab 0 specular reflections are included. This is not desired so materials need to be modified for this model.

So we create a material called ‘black’ and change materials of all geometry to black (the reason for using black will make sense later). to do this we’ll use:

```
xform -m black geom.rad > blackgeom.rad
rfluxmtx -ab 0
```

\[l_{5ph} = VTDS - V_d T D_d S_d + C_{ds} S_{sun} \]
Direct View matrix (V_d)

The view matrix contains coefficients relating energy leaving a window in klem's direction bins that is directly incident at a sensor point or image pixel.

rcontrib is used with -ab 1

As with the direct daylight matrix, specular reflections will be included (which is unwanted) so we’ll have to change the materials in the model.

```plaintext
xform -m black geom.rad | oconv
rfluxmtx -ab 1
```

$I_{5ph} = VTDS - V_d T D_d S_d + C_d s S_{sun}$
Third Term:
Direct sun component

\[I_{5ph} = VTDS - V_d T_D S_d + C_{ds} S_{sun} \]

\[C_{ds} = \text{Sun Coefficient Matrix} \]
\[S_{sun} = \text{Sun Matrix} \]
Generating suns

We need a radiance geometry file containing lots of suns centered in Reinhart sky patches.

- reinsrc.cal
- rcalc

```
echo void light solar 0 0 3 1e6 1e6 1e6 > suns.rad

cnt 5185 | rcalc -e MF:6 -f reinsrc.cal \ 
  -e Rbin=recno -o 'solar source sun 0 0 4 \ 
    ${ Dx } ${ Dy } ${ Dz } 0.533' >> suns.rad
```

Fisheye rendering looking up at a sky full of suns. These suns use the Reinhart MF:6 sky patches.
Sun Matrix

The sun matrix used in the third term of the 5-phase equation.

gendaymtx has a secret option for creating the sunmatrix:

gendaymtx -m 6 -5 -of city.wea \
 > city_direct_m6.smx

- Closest sun position is used per timestep (one position instead of three patches).
- A factor is included to compensate for the solid angle of reinhart patch vs. angular source (-5 option)

\[l_{5ph} = VTDS - V_d TD_d S_d + C_{ds S_{sun}} \]
Direct Sun Coefficient Matrix - sensor points

Fenestration Model:

- Klems BSDF + Proxied geometry
- Tensor Tree BSDF + Proxied geometry
- Tensor Tree BSDF w/o proxied geometry

All Black Materials:
We want ambient rays to sample the BSDF for off angle transmission: -ab 1

When an ambient sample is sent, direct samples are sent from the termination of the ambient rays: we don’t want this behavior

All-black geometry prevents the subsequent direct sample rays from affecting the result.
Direct Sun Coefficient Matrix - renderings

Preventing unwanted rays gets more complex with renderings - a black model produces a black luminance rendering.

Step 1 - generate a illuminance coefficient rendering with black model:

```
vwrays | rcontrib -i
```

Step 2 - generate a material reflectance map - each pixel is equal to the material reflectance divided by pi:

```
rpict -av 0.31831 0.31831 0.31831
```

Step 3 - multiply step 1 times step 2.

This workaround assumes all reflectances are lambertian

This is terribly awkward. I’m still looking for a better way...
Putting it all together

\[I_{5ph} = VTDS - V_dTD_dS_d + C_{dsS_{sun}} \]

dctimestep view.vmx T.xml daylight.dmx city.smx > 1term.dat
dctimestep view_direct.vmx T.xml daylight_direct.dmx city_direct.smx > 2term.dat
dctimestep suncoefficient.mtx city_ds.smx > 3term.dat

rmtxop 1term.dat + -s -1 2term.dat + 3term.dat

rlam 1term.dat 2term.dat 3term.dat | \
rcalc -if9 -e 'r=$1-$4+$7;g=$2-$5+$8;b=$3-$6+$9' \
-e '$1=179*(.265*r+.670*g+.065*b)' | \
awk '{printf("%f\t\",$1);if(NR%8760==0) printf("\n")}' > illum.txt
An Example

Using the model from Axel’s tutorial

Fenestration: clear glazing with venetian blinds.
Creating BSDFs

```
genBSDF +f +b -geom meter -dim 0.5 3.5 1 2 -.3 0 -t4 5 \nbsdf/fullwindow.rad > bsdf/fullwindow_t45.xml
```
Creating BSDFs

bsdf2klems bsdf/fullwindow_t45.xml > bsdf/fullwindow_klems.xml

or

gensBSDF -n 4 +f +b -geom meter -dim 0.5 3.5 1 2 -.3 0 \nbsdf/fullwindow.rad > bsdf/fullwindow_klems.xml
Create Sending / Receiving Surfaces

#@rfluxmtx h=kf u=Z o=vmx/w_%03d.hdr

void glow viewsurf
0
0
4 1 1 1 0

viewsurf polygon inside
0
0
12 0.5 0 1
0.5 0 2
3.5 0 2
3.5 0 1
Create Sending / Receiving Surfaces

@rfluxmtx h= kf u= Z

void glow daymtxsurf
0
0
4 1 1 1 0

daymtxsurf polygon outside
0
0
12 0.5 0 1
0.5 0 2
3.5 0 2
3.5 0 1
Create Sending / Receiving Surfaces

```c
#@rfluxmtx h=u u=Y
void glow ground_glow
0
0
4 1110

ground_glow source ground
0
0
4 0 0 -1 180

#@rfluxmtx h=r1 u=Y
void glow sky_glow
0
0
4 1110

sky_glow source sky
0
0
4 0 0 1 180
```
Create Fenestration model with BSDF

void BSDF BSDFproxy
6 0.24 bsdf/fullwindow_t45.xml 0 0 1 .
0
0

BSDFproxy polygon inside
0
0
0
12 0.5 0 1
0.5 0 2
3.5 0 2
3.5 0 1
Generating View Matrices (Sensor points)

View Matrix:

```
rfluxmtx -l+ -ab 10 -ad 65536 -lw 1.52e-5 -y 6 \  
< data/photocells.pts - objects/viewmtxsurf.rad \  
materials/testroom.mat objects/testroom_Swall.rad \  
objects/testroom.rad objects/ground.rad\  
> matrices/viewmatrix.vmx
```

Direct View Matrix:

```
xform -m black objects/testroom_Swall.rad objects/testroom.rad objects/  
ground.rad > testroom_black.rad

rfluxmtx -l+ -ab 1 -ad 65536 -lw 1.52e-5 -y 6 \  
< data/photocells.pts - objects/viewmtxsurf.rad \  
materials/testroom.mat testroom_black.rad \  
> matrices/viewmatrix_direct.vmx
```
Generating Daylight Matrices

Daylight Matrix:
```
rfuxmtx -c 1000 -ab 2 -ad 1024 objects/daymtxsurf.rad skies/sky.rad \
materials/testroom.mat objects/testroom_Swall.rad \
objects/testroom.rad objects/ground.rad > matrices/daylightmatrix.dmx
```

Direct Daylight Matrix:
```
rfuxmtx -c 1000 -ab 0 -ad 1024 \
objects/daymtxsurf.rad skies/sky.rad \
materials/testroom.mat testroom_black.rad \
> matrices/daylightmatrix_direct.dmx
```
Generating Sun Coefficient Matrix
(Sensor points)

First the suns:

```
echo void light solar 0 0 3 1e6 1e6 1e6 > skies/suns.rad

cnt 5185 | rcalc -e MF:6 -f reinsrc.cal -e Rbin=recno \ 
-o 'solar source sun 0 0 4 ${ Dx } ${ Dy } ${ Dz } 0.533' >> skies/suns.rad
```

Then the octree:

```
xform -m black objects/testroom_Swall.rad objects/testroom.rad objects/ground.rad \ 
| oconv materials/testroom.mat - objects/glazing.rad objects/venetianblind.rad \ 
    objects/glazing_bsdf.rad skies/suns.rad > octs/model_suns.oct
```

Finally the Coefficient Matrix:

```
rtcontrib < data/photocells.pts -l -ab 1 -ad 65536 -lw 1.52e-5 -dc 1 -dt 0 -dj 1 -st 1 -ss 0 -faf \ 
-e MF:6 -f reinhart.cal -b rbin -bn Nrbins -m solar \ 
octs/model_suns.oct > matrices/directsun.dsmx
```
Generating Sky Matrices

First convert an epw file to wea:

```
epw2wea skies/USA_CA_Oakland.Intl.AP.724930_TMY3.epw skies/OakLand.wea
```

Then the three sky matrices:

Normal sky matrix:

```
gendaymtx -of skies/OakLand.wea > matrices/OakLand.smx
```

Direct only sky matrix:

```
gendaymtx -of -d skies/OakLand.wea > matrices/OakLand_direct.smx
```

Direct sun sky matrix

```
gendaymtx -5 -d -m 6 -of skies/OakLand.wea > matrices/OakLand_direct_m6.smx
```
Putting it together (Sensor Points)

First term:
 \(\text{rmtxop matrices/viewmatrix.vmx bsdf/fullwindow.xml } \backslash \)
 \(\text{matrices/daylightmatrix.dmx matrices/OakLand.smx } \rightarrow \text{i_3ph.txt} \)

Second term:
 \(\text{rmtxop matrices/viewmatrix_direct.vmx bsdf/fullwindow.xml } \backslash \)
 \(\text{matrices/daylightmatrix_direct.dmx matrices/OakLand_direct.smx } \rightarrow \text{i_ds3ph.txt} \)

Third term:
 \(\text{rmtxop matrices/directsun.dsmx matrices/OakLand_direct_m6.smx } \backslash \)
 \(> \text{i_ds5ph.txt} \)

Adding the terms:
 \(\text{rmtxop i_3ph.txt } + -s -1 \text{ i_ds3ph.txt } + \text{ i_ds5ph.txt } \backslash \)
 \(| \text{rmtxop -fa -c 47.4 119.9 11.6 -t } \rightarrow \text{E5ph.txt} \)
Putting it together (Sensor Points)

Creating unformatted binary data files:

```
tr -s '	\r\n' 'n' < i_3ph.txt | rcalc -of -e '$1=$1' > i_3ph.dat
tr -s '	\r\n' 'n' < i_ds3ph.txt | rcalc -of -e '$1=$1' > i_ds3ph.dat
tr -s '	\r\n' 'n' < i_ds5ph.txt | rcalc -of -e '$1=$1' > i_ds5ph.dat
```

Combining the files and doing the calculation:

```
rlam -if3 i_3ph.dat i_ds3ph.dat i_ds5ph.dat | \
 rcalc -if9 -e 'r=$1-$4+$7;g=$2-$5+$8;b=$3-$6+$9' \ 
 -e '$1=179*(.265*r+.670*g+.065*b)' | \
 awk '{printf("%f\t",$1);if(NR%8760==0) printf("\n")}' > illum.txt
```

Adding the terms:

```
rmtxop i_3ph.txt + -s -1 i_ds3ph.txt + i_ds5ph.txt \ 
 | rmtxop -fa -c 47.4 119.9 11.6 -t - > E5ph.txt
```
Finally, an illuminance result
Generating View Matrices - Renderings

View Matrix:

```
vwrays -vf views/back.vf -ff -x 600 -y 600 \
  | rfluxmtx `vwrays -vf views/back.vf -x 600 -y 600 -d` \
     -ffc -ab 10 -ad 65536 -lw 1.52e-5 - objects/viewmtxsurf.rad \
     materials/testroom.mat objects/testroom_Swall.rad \
     objects/testroom.rad objects/ground.rad
```

Direct View Matrix:

```
vwrays -vf views/back.vf -ff -x 600 -y 600 \
  | rfluxmtx `vwrays -vf views/back.vf -x 600 -y 600 -d` \
     -ffc -ab 1 -ad 65536 -lw 1.52e-5 - objects/viewmtxsurf.rad \
     materials/testroom.mat objects/testroom_Swall.rad \
     objects/testroom.rad objects/ground.rad
```
Rendered View Matrix - example

View Matrix

Direct View Matrix
Generating Sun Coefficient Matrix - Renderings

First the coefficient renderings:

```
ulimit -n 9999
vwrays -ff -vf views/back.vf -x 600 -y 600 \ 
  | rcontrib \vwrays -vf views/back.vf -x 600 -y 600 -d` -ffc -fo -o viewpics_ds/back_%04d.hdr \ 
  -e MF:6 -f reinhart.cal -b rbin -bn Nrbins -m solar -i -ab 1 -ad 1000 -lw 1e-3 \ 
  octs/model_suns.oct
```

Then the material map rendering:

```
rpict -x 600 -y 600 -vf views/back.vf \av 0.31831 0.31831 0.31831 -aa 0 octs/model_3ph.oct \ 
> materialmap.hdr
```
Sun Coefficient Rendering Example

Sun Coefficient Rendering

Material Map Rendering
Putting it all together (Renderings)

First term:
```bash
dctimestep -n 8760 -if -o hourlypics/back_%04d.hdr viewpics/back_%03d.hdr \ bsdf/fullwindow.xml matrices/daylightmatrix.dmx matrices/OakLand.smx
```

Second term:
```bash
dctimestep -n 8760 -if -o hourlypics_dir/back_%04d.hdr viewpics_dir/back_%03d.hdr \ bsdf/fullwindow.xml matrices/daylightmatrix_direct.dmx matrices/OakLand_direct.smx
```

Third term:
```bash
dctimestep -n 8760 -if -o hourlypics_ds/back_%04d.hdr viewpics_ds/back_%04d.hdr \ matrices/OakLand_direct_m6.smx
```
First Term (three-phase result)

Second Term

Third Term

Five-phase Result
What does the future hold?

- Five-phase simulation
 - Integration in DAYSIM - providing support for CFS
 - Openstudio/COMFEN other tools - via DAYSIM
 - Scripting / command line? - only for super hardcore (I’d rather not...)

- BSDF Data
 - Unhappy with the lack of independent testing for BSDF?
 - LBNL will start to offer BSDF measurement services for a fee to help kick start the industry.
What’s new at LBNL?

I’m glad you asked!
Flexlab
A dedicated camera takes bracketed exposure photos in FLEXLAB. An accompanying computer processes these photos into a single high dynamic range (HDR) image.

HDR images are evaluated for glare. The images to the left represent two conditions on July 3, 2014. The graph below shows glare rating throughout the day.

7:25 am: DGP=0.20, Imperceptible Glare (left images). An overcast morning with electric lighting on to supplement daylight.

3:55 pm: DGP=0.40, Disturbing Glare (right images). A sunny afternoon with sun shining on the desk. The electric light is dimmed to save energy. Glare could be mitigated by lowering the window shade.
LED lighting fixtures have photocell control that dim the fixtures based on available daylight. Photometers distributed in the FLEXLAB mockup measure illuminance on the work plane. The target illuminance for this mockup is 300 lux.

The graphs below show the illuminance in the space measured by the photometers overlaid on a cross-section of the mockup. The window is shown on the left of the cross-section. Illuminance provided by daylight is shown in blue and supplemental illuminance provided by electric lighting is shown in yellow. Dial charts show the dimming levels for top and bottom light produced by each fixture along with the measured power consumed by each fixture.

7:25 am
An overcast morning with electric lighting on to supplement daylight.

3:55 pm
A sunny afternoon with sun shining on the desk. The electric lights are dimmed to save energy.