Capturing 3-D Texture with a Digital Camera

Greg Ward

Anyhere Software

Mashhuda Glencross, Caroline Jay, Jun Liu, Francho Melendez, Roger Hubbold

Manchester University
Depth Hallucination – The Short Story

• Acquire Textured surface model
 – From a single view
 – Using only a digital camera and a flash.
Why Do We Want Depth?

• Classical Texture Mapping
 – Images mapped to 2D geometry
 – No self-shadowing/silhouette detail

• Real-world textured surfaces
 – Visually rich, changes with view and lighting
 – Common in nature and the built environment
 – Aesthetics / ornamentation
Real-World Examples
Depth Hallucination Method

• Steps:
 – Capture flash / No-flash image pair
 – Estimate Albedo
 – Estimate a shading image
 – Calculate depth

• Assumptions:
 – Diffuse/sky illumination
 – Global curvature ignored
 – Specular reflectance removed
Albedo Estimation

• Starting with flash / no-flash input pair
 – Correct for Ambient lighting using no-flash image
 – Correct for vignetting using flash calibration image

• Result – Albedo map

\[
\frac{I_f(j) - I_d(j)}{I_c(j)}
\]
Compute Shading Image

\[S = I_a - I_d \]
Depth Estimation from Shading Image

• We formulate a hypothesis about local surface structure
Above/Below Plane Models

• Above plane model

• Below plane model
Combined Surface Model

\[D(S) = \frac{d}{a} = \begin{cases}
\sqrt{1/S - 1} \\
2(1-S)
\end{cases} \]
Apply at Multiple Scales

$r(i) = 27$

$r(i) = 9$

$r(i) = 3$

$r(i) = 1$
Simplified Capture w/o Flash

• Histogram Matching
 – Needs exemplar model
 – Single diffuse-lit photo
 – Match histograms
 – Create rendering
Validation

• First user study
 – Rank sequentially presented images
 • Photos – 3.97
 • Relit images – 3.22
 • Histogram matched – 2.98
Validation

• Second user study
 – Select most plausible surface
 • No significant difference in people’s subjective choices
Limitations

• Our method will fail if:
 – Surface geometry cannot be represented as a height field
 – Daylight is heavily biased towards one dominant direction
 – Surface contains highly reflective or translucent materials
Conclusion

• Simple method
• Results – like photographs
 – 75% of participants rated our images more likely to be photos
 – Participants unable to decide if renderings of hallucinated depth or laser-scans more plausible