Code Changes and Additions in Radiance 3.7

Greg Ward
Anyhere Software
What’s New in 3.7

• Added pure Monte Carlo (\texttt{-u}) option
• Added depth-of-field (\texttt{-pd}) option
• Added “Russian roulette” ray termination
• Enhanced interreflection calculation
• \texttt{mksource} program to identify light sources
• \texttt{rtcontrib} program for contribution coeff.
• Created \texttt{meta2bmp} metafile converter
• Retired several unused programs
Quasi-Monte Carlo (−u−)

Familiar “brushed” appearance
Pure Monte Carlo ($-u+\$)

Noisier but no discernable pattern
Depth-of-Field Sampling (–pd)

- Assigns aperture diameter in world units
- Also requires focus distance
 - Uses length of view direction (–vd) vector
 - Set by new rvu “focus” command
- More accurate than pdfblur with pinterp
Depth-of-Field Example

No blur
Depth-of-Field Example

pdfblur with *pinterp*
(32 samples)
Depth-of-Field Example

rpict with -pd option
• Standard algorithm is strict termination below $-lw$ minimum weight limit
• Russian roulette continues trace with probability of $(\text{ray_weight}/\text{min_weight})$
 • Continued ray weight is reset to min_weight
• Eliminates bias due to ray termination
• Enabled with negative value to $-lr$ option
• Made possible by code modifications needed for rtcontrib
Russian Roulette Example

Standard solution \((-lw \ 0.01 \ -lr \ 10, \ Time = 1.0)\)
Russian Roulette Example

Ideal result (-lw 1e-6 -lr 10, Time = 4.3)
Russian roulette \((-lw \ 0.01 \ -lr \ -10, \ Time = 1.3)\)
Russian Roulette Example

Ideal result

Standard Solution
• Identifies bright regions in HDR environment map (*light probe*)
• Superimposes distant *illum source’s*
• Reduces noise in resulting renderings
• Only works with *glow source* inputs
mksource Algorithm

- Sample all directions using geodesic mesh
- Determine threshold from top 2%
- Loop until no pixels over threshold:
 1. Identify brightest unclaimed pixel
 2. Grow source towards brightest unclaimed perimeter until:
 a) Source exceeds maximum size, or
 b) Perimeter values all below threshold, or
 c) Source average drops below threshold

+ Methods to avoid over- and under-counting
Example mksourcere Results

Original
Example mksource Results

```
mksource -t 10 -a 10
```
Example mksource Results

```
mksourcet 5.5 -a 10
```
rtcontrib Program

- Exploits new capability in rtrace for reporting ray contribution coefficients
- Contribution coefficients only useful deep in ray tree ⇒100+ million values per image
- rtcontrib sums & tabulates coefficients
 - Flexible control over where to gather rays
 - Output can be Radiance picture files, ASCII tables, or binary float’s or double’s
- pcomb useful in summing coeff. pictures
Simple rtcontrib Example

```bash
% rtcontrib @render.opt -I+
   -o c_%s.dat -m light1 -m light2
   scene.oct < test.dat
```

- Produces two files: c_light1.dat & c_light2.dat
- These contain irradiance coefficients for our two sources
- Linear combination of coefficients yields illuminance for any dimming settings
- Advantage: 1 calculation rather than 2
Tregenza’s Daylight Coefficient Method:

Sky is divided into roughly equal-sized patches, and the relative contribution of each patch is calculated for a given geometry.
Tregenza's Daylight Coefficient Method:
Sky is divided into roughly equal-sized patches, and the relative contribution of each patch is calculated for a given geometry.

More Practical Example

Sky patch contributions

Tregenza Sky Patches

Patch ID
Alt. Az.

N

Sky patch contributions
Tregenza’s Daylight Coefficient Method:
Sky is divided into roughly equal-sized patches, and the relative contribution of each patch is calculated for a given geometry.

More Practical Example

Tregenza Sky Patches

Solar Coefficients
(point samples)
Summed Result from pcomb
Further Possibilities

- Have not tried computing BRDF’s and BTDF’s, but sure it can be done
- Might be possible to extend `mkillum` to handle curved, specular devices
- More details on how to use `rtcontrib` with a more extensive example in afternoon talk